当前位置 :首页 > 粒子群算法实现旅行商问题(粒子群算法解决路径问题编程)

粒子群算法实现旅行商问题(粒子群算法解决路径问题编程)

2025-08-06 01:10:17分类:知识大全浏览量(

粒子群算法实现旅行商问题

粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,它模拟了鸟群狩猎和食物捕捉的行为,通过不断迭代来寻找最优解

以下是使用Python实现的粒子群算法解决旅行商问题的示例代码:

```python

import numpy as np

import random

计算总距离

def calculate_total_distance(route, distance_matrix):

total_distance = 0

for i in range(len(route) - 1):

total_distance += distance_matrix[route[i]][route[i + 1]]

total_distance += distance_matrix[route[-1]][route[0]]

return total_distance

粒子群算法解决旅行商问题

def pso_tsp(distance_matrix, n_particles=20, n_iterations=100, w=0.9, c1=0.1, c2=0.1):

n_cities = len(distance_matrix)

particles = []

best_particles = []

global_best = None

初始化粒子

for _ in range(n_particles):

route = list(range(n_cities))

random.shuffle(route)

particles.append(route)

total_distance = calculate_total_distance(route, distance_matrix)

best_particles.append(route)

if global_best is None or total_distance < global_best[1]:

global_best = (route, total_distance)

迭代优化

for _ in range(n_iterations):

for i in range(n_particles):

更新粒子位置

particle = particles[i]

best_particle = best_particles[i]

for j in range(n_cities):

r1 = random.random()

r2 = random.random()

cognitive = c1 * r1 * (best_particle[j] - particle[j])

social = c2 * r2 * (global_best[0][j] - particle[j])

particle[j] += cognitive + social

修正粒子位置

for j in range(n_cities):

if particle[j] < 0:

particle[j] = -particle[j]

elif particle[j] >= n_cities:

particle[j] = n_cities - 1

计算当前粒子的总距离

total_distance = calculate_total_distance(particle, distance_matrix)

更新最佳粒子位置

if total_distance < calculate_total_distance(best_particles[i], distance_matrix):

best_particles[i] = particle.copy()

更新全局最佳位置

if total_distance < global_best[1]:

global_best = (particle.copy(), total_distance)

return global_best

示例距离矩阵

distance_matrix = [

[0, 10, 15, 20],

[10, 0, 35, 25],

[15, 35, 0, 30],

[20, 25, 30, 0]

]

运行粒子群算法

best_route, best_distance = pso_tsp(distance_matrix)

print("Best route:", best_route)

print("Best distance:", best_distance)

```

在这个示例中,我们定义了一个`calculate_total_distance`函数来计算给定路线的总距离。然后,我们实现了`pso_tsp`函数,该函数使用粒子群算法来寻找最短路径。我们提供了一个示例距离矩阵,并运行了粒子群算法来找到最佳路线。

粒子群算法实现旅行商问题(粒子群算法解决路径问题编程)

粒子群算法解决路径问题编程

粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,用于求解最优化问题

以下是一个使用Python实现的简单粒子群算法来解决旅行商问题(TSP)的示例:

```python

import numpy as np

import random

def tsp_distance(city1, city2):

return np.sqrt((city1[0] - city2[0]) 2 + (city1[1] - city2[1]) 2)

def total_distance(path, cities):

return sum(tsp_distance(cities[path[i]], cities[path[i - 1]]) for i in range(len(path)))

def pso_tsp(cities, num_particles=20, num_iterations=100, w=0.9, c1=0.1, c2=0.1):

num_cities = len(cities)

particles = [np.random.permutation(num_cities) for _ in range(num_particles)]

best_paths = [None] * num_particles

best_distances = [float("inf")] * num_particles

for i, particle in enumerate(particles):

distance = total_distance(particle, cities)

if distance < best_distances[i]:

best_paths[i] = particle.copy()

best_distances[i] = distance

global_best_path = best_paths[np.argmin(best_distances)]

global_best_distance = min(best_distances)

for _ in range(num_iterations):

for i, particle in enumerate(particles):

r1, r2 = random.random(), random.random()

velocity = w * particle + c1 * r1 * (best_paths[i] - particle) + c2 * r2 * (global_best_path - particle)

particle += velocity

确保粒子不会出现在城市之外

particle = np.clip(particle, 0, num_cities - 1)

distance = total_distance(particle, cities)

if distance < best_distances[i]:

best_paths[i] = particle.copy()

best_distances[i] = distance

if distance < global_best_distance:

global_best_path = particle.copy()

global_best_distance = distance

return global_best_path, global_best_distance

if __name__ == "__main__":

cities = np.array([[1, 1], [5, 1], [7, 5], [4, 6], [2, 4]])

path, distance = pso_tsp(cities)

print("Best path:", path)

print("Best distance:", distance)

```

这个示例中,我们定义了`tsp_distance`函数来计算两个城市之间的距离,`total_distance`函数来计算给定路径的总距离。`pso_tsp`函数实现了粒子群算法,参数包括城市列表、粒子数量、迭代次数以及粒子群算法的三个参数w、c1和c2。

在主程序中,我们定义了一个城市列表,然后调用`pso_tsp`函数来求解TSP问题。我们输出找到的最佳路径和对应的距离。

上一页12下一页

粒子群算法实现旅行商问题(粒子群算法解决路径问题编程)此文由小邹编辑,于2025-08-06 01:10:17发布在知识大全栏目,本文地址:粒子群算法实现旅行商问题(粒子群算法解决路径问题编程)http://www.qquuu.com/detail/show-23-79066.html

热门知识

推荐知识